Structural analysis of tumor-related single amino acid mutations in human MxA protein
نویسندگان
چکیده
BACKGROUND Human myxovirus resistant protein A (MxA), encoded by the myxovirus resistance 1 (Mx1) gene, is an interferon (IFN)-triggered dynamin-like multi-domain GTPase involved in innate immune responses against viral infections. Recent studies suggest that MxA is associated with several human cancers and may be a tumor suppressor and a promising biomarker for IFN therapy. Mx1 gene mutations in the coding region for MxA have been discovered in many types of cancer, suggesting potential biological associations between mutations in MxA protein and corresponding cancers. In this study, we performed a systematic analysis based on the crystal structures of MxA and elucidated how these mutations specifically affect the structure and therefore the function of MxA protein. METHODS Cancer-associated Mx1 mutations were collected and screened from the COSMIC database. Twenty-two unique mutations that cause single amino acid alterations in the MxA protein were chosen for the analysis. Amino acid sequence alignment was performed using Clustal W to check the conservation level of mutation sites in Mx proteins and dynamins. Structural analysis of the mutants was carried out with Coot. Structural models of selected mutants were generated by the SWISS-MODEL server for comparison with the corresponding non-mutated structures. All structural figures were generated using PyMOL. RESULTS We analyzed the conservation level of the single-point mutation sites and mapped them on different domains of MxA. Through individual structural analysis, we found that some mutations severely affect the stability and function of MxA either by disrupting the intra-/inter-molecular interactions supported by the original residues or by incurring unfavorable configuration alterations, whereas other mutations lead to gentle or no interference to the protein stability and function because of positions or polarity features. The potential clinical value of the mutations that lead to drastic influence on MxA protein is also assessed. CONCLUSIONS Among all of the reported tumor-associated single-point mutations, seven of them notably affect the structure and function of MxA and therefore deserve more attention with respect to potential clinical applications. Our research provides an example for systematic analysis and consequence evaluation of single-point mutations on a given cancer-related protein.
منابع مشابه
In-silico study to identify the pathogenic single nucleotide polymorphisms in the coding region of CDKN2A gene
Background: CDKN2A, encoding two important tumor suppressor proteins p16 and p14, is a tumor suppressor gene. Mutations in this gene and subsequently the defect in p16 and p14 proteins lead to the downregulation of RB1/p53 and cancer malignancy. To identify the structural and functional effects of mutations, various powerful bioinformatics tools are available. The aim of this study is the ident...
متن کاملDeep mutational scanning identifies sites in influenza nucleoprotein that affect viral inhibition by MxA
The innate-immune restriction factor MxA inhibits influenza replication by targeting the viral nucleoprotein (NP). Human influenza virus is more resistant than avian influenza virus to inhibition by human MxA, and prior work has compared human and avian viral strains to identify amino-acid differences in NP that affect sensitivity to MxA. However, this strategy is limited to identifying sites i...
متن کاملScreening for Causative Mutations of Major Prolificacy Genes in Iranian Fat-Tailed Sheep
Objective The presence of different missense mutations in sheep breeds have shown that the bone morphogenetic protein receptor 1B (BMPR1B), bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) genes play a vital role in ovulation rate and prolificacy in ewes. Therefore, the present study investigates BMPR1B, BMP15 and GDF9 genes mutations in prolific ewes of Iranian ...
متن کاملA Novel Genetic classification of SARS coronavirus-2 following whole nucleic acid and protein alignment of the isolated viruses
Background and aims: The end of 2019 has marked the year, which the human population encountered a novel virus; SARS-CoV-2 that causes a disease namely COVID-19. Here we focused on the genome and protein mutations and subsequently suggested a new classification of the SARS-CoV-2. Materials and Methods: Our study showed that some extra positions in the virus genome play a key role in the SARS-C...
متن کاملPrioritization of Deleterious Variations in the Human Hypoxanthine-Guanine Phosphoribosyltransferase Gene
ABSTRACT Background and Objectives: Non-synonymous single nucleotide polymorphisms are typical genetic variations that may potentially affect the structure or function of expressed proteins, and therefore could be involved in complex disorders. A computational-based analysis has been done to evaluate the phenotypic effect of no...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 34 شماره
صفحات -
تاریخ انتشار 2015